
CUDA and Applications to Task-based Programming

M. Kenzel, B. Kerbl, M. Winter and M. Steinberger

These are the course notes for the final portion of the tutorial on “CUDA
and Applications to Task-based Programming”, as presented at the
Eurographics conference 2021, wherein we discuss relevant results from
dedicated efforts in the scientific community, as well as the established
and state-of-the-art use cases for applications of task-based programming
with CUDA.
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Overview

• Different levels of the GPU hierarchy and GPU queues

• Task-based Scheduling
• Host Controller Architecture
• Persistent Threads & Megakernels
• Dynamic Parallelism

• Mixed Parallelism usage scenarios
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Let us now turn to Task-based scheduling on the GPU. In this part of the
tutorial, we will cover the different levels of the GPU hierarchy and how
they can be exploited for different programming patterns. We then turn to
Task Scheduling, first detailing queues on GPUs, a core component of most
task scheduling approaches. Based on such queues, we then build
different schemes for task scheduling on the GPUs, controlled from the
CPU or entirely from the GPU. Lastly, we will hear about some examples,
which greatly benefit from task parallelism and typically exhibit mixed
parallelism during execution.
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Motivation

• Heterogeneous parallelism in many applications
• Different stages 

• May have different levels of parallelism
• May have different requirements

• Shared Memory
• Registers

• May generate new work

• Hard to fit into existing 
programming model
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CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

REYES-style
Micropolygon Rendering

When considering many applications one might like to parallelize, we
notice that many of those exhibit heterogeneous parallelism throughout.
This can manifest differently depending on the application
• Some might simply experience different levels of parallelism throughout

the stages of an application, where, to give a hypothetical example, a
work item might best be handled by a single thread for the first stage
but by a block in the last stage. Choosing one or the other overall will
result in poor performance

• Different stages might also have different requirements, i.e., need more
or less shared memory or registers, etc.

• Lastly, stages might also generate new work and dynamic resource
management is really challenging on the GPU

Overall it is quite clear that fitting all of that into the existing programming
model can be quite challenging and requires a lot of manual effort and
performance tuning to get right.
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Types of Parallelism

Task Parallelism
• Parallelize different, independent 

computation
• Distribute tasks to processors
• e.g., Multitasking, Pipeline 

Parallelism

Data Parallelism
• Parallelize same computation on 

different, independent data
• Distribute data to processors
• e.g., Image Processing, Loop-level 

Parallelism, Tiling, Divide and 
Conquer
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When we talk about parallelism in general, there are typically two types
that come to mind, task parallelism as well as data parallelism. In general
computing environments, we typically experience task parallelism. This
means, we have different and independent computations and we want to
parallelize these computations by distributing the tasks to the available
processors. Multitasking and Pipeline Parallelism are typical examples of
task parallelism. On the GPU, we generally work with data parallelism,
which means that we perform the same computation on many different,
independent data items. Here, the data is distributed to the processors.
The classical example would be any form of image processing (performing
some operation per pixel), but also loop-level parallelism falls into that
category as well as tiling and divide-and-conquer approaches. As our focus
in today’s tutorial is on task scheduling, we will try to see how this data-
parallel architecture on the GPU can be appropriated for task-parallel
operations.
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Kernel-based Programming Model
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To shortly recap the overall terms and hierarchy on the GPU, here is a
short overview.

Starting at the lowest level, we have threads, whereas 32 threads are
executed together as a warp, scheduled by the warp scheduler. Multiple
warps are combined into so-called blocks. All threads within a block are
furthermore guaranteed to reside on one multiprocessor (SM) and share a
faster cache (L1) and have access to fast, shared memory, useful for
communication between threads in a block.

Threads from different blocks do not share the same, fast memory in
shared memory, and also do not have any guarantees if they execute on
the same or different SMs or concurrently or one after the other. Hence,
threads of different blocks should not rely on cooperation but perform
largely independent computations. The whole configuration running on
the GPU is called a grid.
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Kernel-based Programming Model
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Here we have a classical example which fits a rigid grid configuration quite
well with image processing.

Here, one can start one entity (can be a thread, a sub-group of a warp, a
full warp or block) for each pixel and perform any kind of operation per
pixel. As long as these operations are uniform over the whole image, we
expect no differences in run-time between pixels and overall a well-
optimized execution pattern.
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Kernel-based Programming Model
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On the other hand, let’s think about the graphics pipeline in general. We
have various stages with very different levels of parallelism, levels of
utilization of the GPU, requirements for sorting at certain points, etc.

This is a prime example of mixed parallelism that is hard/impossible to
capture with one single, rigid grid configuration and requires more effort
to efficiently execute. One core problem is inherent in the dynamic nature
of the problem, given a certain input to the input assembly stage, the
number of shader invocations in the following stages is scene-dependent
and requires support for dynamic work generation.

7



How to organize work?

• What we want
• Keep track of work items
• Allow simultaneous access by all cores for best utilization of cores
• Allow for work generation

• Organized work as tasks and store it in queues
• Allow “software scheduler” to fetch/append work
• Linearizable
• Low resource footprint
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Based on this problem of dynamic work generation, we first have to think
about the organization of the work at hand. In a general environment, we
want to keep track of a number of work items, allow access to these
simultaneously by all cores and also allow the cores to dynamically
generate new work.

One possibility in this case would entail organizing work as tasks and
storing these tasks or references to these tasks in queues. These allow a
software scheduler to fetch new work to execute but also enqueue new
work to be executed by a different core. Furthermore, it would be great if
the queue is also linearizable and has a low resource footprint, since
especially memory resources can be quite scarce on the GPU.

8



Queues
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In the following, we’d like to present to you three different variants of
queues that we have used in a number of our own publications for various
purposes. Hence this is not an exhaustive list of different queue types on
GPUs, but a selection based on our own research directions.
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Index Queue

• Queue with support for 
integral values

• Fixed size
• Supports concurrent 

enqueues and dequeues

value value valuevaluevalue 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF0xFF0xFF value value

back_ front_

__device__ bool IndexQueue::enqueue(index_t index)
{

int fill = atomicAdd(&count_, 1);
if (fill < size_)
{

unsigned int pos = atomicAdd(&back_, 1) % size_;
while (atomicCAS(queue_ + pos, FREE, index) != FREE)

sleep();

return true;
}
return false;

}

__device__ bool IndexQueue::dequeue(index_t& element)
{

if (atomicSub(&count_, 1) <= 0)
{

atomicAdd(&count_, 1);
return false;

}
unsigned int pos = atomicAdd(&front_, 1) % size_;
while ((element = atomicExch(queue_ + pos, FREE)) == FREE)

sleep();
return true;

}

size_ = 12
count_ = 6 valuevaluevalue 0xFF0xFF0xFFcount_ = 7 value
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Let’s start with a simple queue that can be used for integral values. These
values can be used for multiple purposes but typically they form a
reference to a task or resource. This queue has a fixed size as well as a
front and a back pointer, acts as a ringbuffer and supports concurrent
enqueues and dequeues, which is a very important requirement for task
scheduling with dynamic work generation.

During an enqueue operation, first the count (counting the number of
elements currently in the queue) is increment and a check against the size
protects against overwriting existing data. Most current queue
implementations do not explicitly handle “out-of-queue-storage”, hence
choosing a sensible size from the beginning is important.

After that, the back pointer is incremented atomically, resulting in a
position in the queue modulo the queue size.
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To enable concurrent enqueues/dequeues, elements are not just taken
from the queue as the assigned slot might have been reported as free by
another thread in a concurrent dequeue operation, but the data might not
have been read yet. To protect against write-before-read, writing to the
queue is done using an atomic Compare-And-Swap operation, which will
not alter the queue state until the position is marked as free.

The sleep operation is done using __nanosleep() on post-Volta
architectures and done using a threadfence() on older architectures, which
we have found to also work heuristically, resulting in re-scheduling.

Dequeue operations are expected to fail quite often, as multiple threads
might query for new work to become available. Hence if decrementing the
count fails, it is just incremented again atomically and control is returned
to the user. Otherwise, the front pointer is moved back, once again
resulting in a position in the queue modulo the queue size. And as with
enqueue, an element is not just taken from the queue but this is done
using an atomic Exchange, as a queue position might have already been
advertised as containing a value but the write to this position has not
happened yet. This protects against read-before-write problems, whose
frequency typically depends on the number of concurrent threads
potentially accessing the queue and the size of the queue.

Queues like this found use in multiple of our projects, ranging from
dynamic graph management, where a queue could track dynamic vertices
or edges, to dynamic memory management, tracking free pages of
memory within the system.
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Hierarchical Bucket Queue

• If memory is abundant
• Multiple Queues (buckets)
• Access policy determined by user

• Applications
• Prioritization
• Task Aggregation
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Hierarchical Bucket Queuing for Fine-Grained 
Priority Scheduling on the GPU

Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg, Hans-Peter Seidel, 
Markus Steinberger

EG‘17

Another type of queue could be an approach called “Hierarchical Bucket
Queue”, which relies on the abundance of memory and allows for new
applications by instantiating multiple queues, so-called buckets with a
user-determined access policy.

Based on such a design, one can realize new applications, like prioritization
of tasks as well as task aggregation. The underlying queue implementation
can follow a similar design to the queue discussed before, but the
combination of multiple queues allows for new concepts. This queueing
approach was introduced by Bernhard Kerbl and colleagues as a paper at
Eurographics 2017, called “Hierarchical Bucket Queuing for Fine-Grained
Priority Scheduling on the GPU”, if one wants to read up on the details.
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CUDA Cores

Bucket I (High)

HBQ: Prioritization

05.05.2021 – 06.05.2021 CUDA and Applications to Task-based Programming 12

Bucket II (Low)

Task 4

CUDA Cores

Task 5

Task 2Task 3 Task 1

One new concept would be prioritization of tasks. One simple way of
achieving prioritization would be to instantiate multiple queues with
varying priorities. This way, executing threads would query high priority
queues preferentially first before taking work from lower priority queues.
This system can also be extended hierarchically, where more than two
queues would be instantiated into multiple levels of a priority hierarchy.
We will show an example of something like that later on.
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CUDA Cores
64 Threads

Bucket I

HBQ: Task Aggregation
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Another new concept would be task aggregation, whereas one queue
could hold simple task items that are executed one by one, while another
might hold smaller tasks, that are then executed as an aggregate for more
efficient execution. In this example here, Bucket I has larger tasks that
have 64 work items in them, efficiently handled by 64 threads and
generates a number of smaller tasks with 16 items each. The second
Bucket hence acts as an aggregation queue, where the executing cores
always withdraw 4 tasks with 16 work items each, hence once again 64
work items for 64 threads to execute the work efficiently.
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HBQ: Examples

• Ray-Prioritization in Path Tracing
• Regions with high variance need more samples

• Use coarse priority intervals
• High-to-Low Prioritization

Use variance as Priority

• N bucket queues of fixed size
• Choose bucket based on current observed variance
• Linear sorting of work according to image error
• More threads scheduled to work on noisy regions
• Achieve uniform quality with non-uniform sampling
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HI LO
…

One concrete example for the application of task prioritization would be
ray prioritization in path tracing. Here it may make sense to prioritize
regions with a high variance, where it can make sense to build up coarse
priority intervals, and using the variance as a measure of priority, use a
high-to-low prioritization.

In this concrete example, one could instantiate a number of bucket
queues with a fixed size per queue, whereas a bucket is chosen depending
on the currently observed variance.
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HBQ: Examples

• Reyes-style Micropolygon Rendering
• Prefer render jobs over split jobs

• Two buckets for different routines

• Prioritize splits based on focus distance
• High: Near
• Low: Far

• Dual-level scheduling
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HI

HI LO…

LO

Render (Dice)

Split horizontally

Split vertically

Another example would be classical Reyes-style Micropolygon Rendering,
an application consisting of multiple stages that are executed, as shown in
the graphic on the right. Since visual output is most important, it would be
favorable to prefer render jobs over splitting jobs to guarantee smoother
playback. Furthermore, one can prioritize geometry splits based on the
distance to the camera, once again favoring geometry close to the camera
compared to further away.

That way, Rendering is prioritized over splitting geometry, whereas
splitting near geometry is prioritized over splitting geometry further away
or maybe not in focus in an Augmented Reality scenario.
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Broker Queue | Design

• Static ring buffer of size N
• Head/Tail pointers (packed into 64-bit integer)
• Can contain elements or pointers
• Head and Tail can wrap around buffer

• Ticketing System
• Enqueue/Dequeue associated with ticket number

• Operations only execute if their ticket has been issued
• Position in buffer can have multiple tickets
• Results in fair ordering

• Operations with earlier ticket is guaranteed to finish first
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void waitforTicket(T Pos, T ExpectedTicket)
{

auto Ticket = Tickets[Pos];
while (Ticket != ExpectedTicket) do
{

backoff();
Ticket = Tickets[Pos];

}
}

The Broker Queue: A Fast, 
Linearizable FIFO Queue for 

Fine-Granular Work Distribution 
on the GPU 

Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, 
Dieter Schmalstieg and Markus Steinberger

ICS‘18

Finally, let’s look at another design for a queue, called the Broker Queue.
The basic queue is once again very similar to the basic index queue
discussed before, build on a static ring buffer of a certain size with head
and tail pointers (in this case packed into one 64bit integer). It can also
contain just references to tasks but also complete tasks as well.

The main change compared to the previous approach is the introduction
of a ticketing system. Each operation on the queue, each
enqueue/dequeue operation, is associated with a ticket number. An
operation only executes once its ticket has been issued, resulting in fair
ordering overall. Operations that have an earlier ticket are guaranteed to
finish first. Furthermore, each queue position can have multiple tickets
concurrently. This queue design is based on a paper, once again by
Bernhard Kerbl and colleagues, at ICS’18 called: “The Broker Queue: A
Fast, Linearizable FIFO Queue for Fine-Granular Work Distribution on the
GPU”.
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Broker Queue | Access Data

• Write/Read Data
• Increment head/tail to get ticket
• Wait for Ɵcket → perform operaƟon

• If successful → issue next Ɵcket for slot
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void putData(T Element)
{

auto Pos = atomicAdd(&Tail, 1);
auto P = Pos % N;
waitForTicket(P, 2 * (Pos/N));
RingBuffer[P] = Element;
Tickets[P] = 2 * (Pos/N) + 1;

}

T readData()
{

auto Pos = atomicAdd(&Head, 1);
auto P = Pos % N;
waitforTicket(P, 2 * (Pos/N) + 1);
Element = RingBuffer[P];
Tickets[P] = 2 * ((Pos + N) / N);
return Element;

}

Accessing the queue now utilized the ticketing system to grant or
temporarily deny access to a queue element. A position is found by
increment the head or tail pointer as before, resulting in a position
modulo the queue size.

But before an access can occur, each executing thread has to wait for its
ticket to be issued. Only once this has happened, the operation, enqueue
or dequeuing from the queue, can occur and after completion, the next
ticket for the current slot will be issued.

17



Broker Queue | Broker

• Broker
• Acts as safeguard

• Many overlapping operations
• Won’t let just any trying thread pass

• Keeps tally of promised operations
• Ensures balanced ratio between enqueue/dequeue

• Count
• Reflects fill state after promised operations
• Modified via atomicAdd/Sub
• Contended atomics less of an issue on GPU

• Would be a problem on CPU
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Additional to the ticketing system, there exists also a so-called Broker,
which acts as a safeguard in-between the incoming enqueue and dequeue
operations, as there can be many overlapping operations, while the actual
write/read accesses only occur much later and also in unpredictable order.
It keeps a tally of the number of promised operations and overall tries to
keep a balanced ratio between the enqueue and dequeue operations.

This tally is tracked via an atomic count variable, which reflects the fill
state after a promised operation has been performed.
As is the case with all queue designs discussed up until now, all rely heavily
on atomics, but since atomics are very well optimized on the GPU,
contended access is much less of an issue compared to the CPU, where
such a design might be problematic.
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Broker Queue | Enqueue

• Enqueue/Dequeue
• Wait for Broker

• Ensure operations is balanced

• Always check full/empty state
• Broker and queue parameters loosely connected

• Both have to reflect same state

• Check in loop
• Non-blocking behavior
• Makes queue a linearizable FIFO queue
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STATUS enqueue(T element)
{

while(not ensureEnqueue()) do
{

auto s = queue_state; // Read head/tail
if(N <= s.tail - s.head < (N + MaxThreads/2))

return FULL;
}
putData(element);
return SUCCESS;

}

T dequeue()
{

while(not ensureDequeue()) do
{

auto s = queue_state; // Read head/tail
if((N + MaxThreads/2) <= s.tail - s.head - 1)

return EMPTY;
}
return readData();

}

Before the ticketing system is now accessed, each executing thread first
has to get by the Broker, which ensures that the operations are balanced.
While waiting for the Broker, the state is always queried, as the individual
parameters of the Broker and the queue itself are only loosely connected
and may return differing state information. Hence, in a loop the state is
checked using non-blocking access, which makes this queue design a
linearizable FIFO queue.
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Broker Queue | Example
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Dequeue

Enqueue

#Threads = 8

Buffer Size (N) = 2
H

T

Deq < Enq, Deqp = 2.
Enqp = Deqp + N = 4.

Here we have a concrete example, with a Broker with a certain policy, in
this case enqueue operations should be prioritized over dequeue
operations and a certain number of operations, in this case six, might
access the queue at one point in time.

In this example we have a buffer size of two and eight threads trying to
access the queue, two trying to dequeue and the others waiting on an
enqueue operation.

Given this policy, the Broker will let six threads through to the actual
ticketing system and the enqueuing threads will start their work.
As there are more threads present then there are physical queue spaces,
the other threads are waiting on tickets to be fulfilled, while two
enqueuing threads can start their work immediately, the other two
enqueue threads move the head pointer, but wait on their tickets.

20



The remaining two threads waiting for the enqueue operation are
currently held back by the Broker.

As soon as the enqueue operations are done, the two dequeing threads
can take this work from the queue and signal the tickets of the remaining
enqueuing threads.
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Broker Queue | Non-linearizable variants

• Broker Work Distribution
• Ignores loop

• May report erroneous state

• Benefits
• Simpler!
• Potentially faster

• Broker Stealing Queue
• Multiple Broker Queues

• Steals work if available

• Ensures looping
• Locally consistent
• Not globally linearizable
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This base design can also be utilized in different, non-linearizable variants,
two of which are noted here. By ignoring the loop, one can build a simpler
and potentially faster work distribution at the cost of potentially erroneous
state information intermittently. Another option would include a so-called
Broker Stealing Queue, which consists of multiple Broker Queues which still
remain locally consistent and can steal work from another, but are not
globally linearizable.
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Task-based Scheduling
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After this introduction to some queue types, let’s now focus on task-based
scheduling itself.
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What do we need to solve?

• We want 
• Handle heterogeneous 

workloads
• Dynamic work generation
• Efficient scheduling
• Exploit shared memory
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CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

What do we need to solve? What are the properties of applications that
our task scheduling system should be able to handle?
• First of all, the individual tasks might have very different requirements

and levels of parallelism. The two plots on the right show different
representations of such an application setup. On top, we can visualize
an application consisting of multiple tasks, each of these tasks can have
a queue in global memory associated with it which can contain work
items. It may also have a local queue, exploiting shared memory and
each work item might be handled by a different number of threads,
starting from just one thread, sub-groups within a warp, a warp or even
a full block handling one item. On the bottom, we see a visual
representation for a Reyes-style renderer, with different stages and the
bars for each stage visualize the number of threads required per item,
the shared memory requirements, as well as the register requirements
for each stage -> overall the requirements are very heterogeneous in
this scenario.
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• The system should also be able to handle dynamic work generation,
once again considering Reyes-style rendering, the number of splits
depends on the geometry currently in view and hence results in a
dynamic number of samples to shade

• All these different requirements can make efficient scheduling quite
challenging

• Lastly, if possible, we should try to exploit shared memory to increase
performance even further

23



Run to Completion

• Simplest execution model

• All stages in a single kernel
• Does NOT support

• Global synchronization
• Dynamic work generation

• Requirements of largest stage
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Let’s start by investigating very simple models for such task-based
applications. One of the simplest, although likely not the one typically
chosen, would be the Run to Completion model, which puts all stages of
our application into one, single kernel.

Since we cannot guarantee that all blocks fit on the device at once, we
cannot guarantee support for dynamic work generation (also in this simple
model, we typically also don’t have a queue for work items), also no global
synchronization between stages is possible. Furthermore, the
requirements of the largest stage (i.e. register requirements, shared
memory, etc.) count towards the possible occupancy achieved.

On the positive side, this model does not require synchronization with the
CPU and may hold data in shared memory from one stage to the next, but
the drawbacks largely outweigh these benefits.
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Kernel by Kernel

• Most commonly used

• Split application into series of 
kernel launches

• Each kernel tailored to task
• Requirements per kernel

• CPU Synchronization
• Requires controller on CPU

for dynamic work generation
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Next, we have the most well-known approach, so-called Kernel by Kernel,
where the application is simply split into a series of kernel launches for
each stage in the application. The obvious benefit is that each kernel is
specifically tailored to the task, hence we can reach optimal occupancy for
each of the stages.

On the downside, we now require CPU synchronization, which means
additional overhead and removes the possibility of using shared memory
to keep memory local from one stage to the next. And in general, it would
require some form of a controller on the CPU to allow for dynamic work
generation, as otherwise the stages would just run once for the given
work and then are done.

25



Time-Sliced Kernels

• Variant of KBK that supports dynamic work generation

• CPU checks amount of work per task
• Launches kernels with work

• Into separate streams for concurrent execution
• Wait for kernels to finish

• Check work again and start launching again
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A variant of the Kernel by Kernel approach is typically called Time-sliced
Kernels. This augments the basic approach by a controller on the CPU side
to allow for dynamic work generation. This also means that work queues
have to be used.

The controller then can read back the current queue fill levels from the
GPU and then launch new kernels with work, possibly also in separate
streams for potential concurrent execution. This checking is done in a
loop, where the controller waits for the kernels to finish, checks the
amount of work and potentially launches new kernels.
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Time-Sliced Kernels

27

e.g. Laine et al. [2013]

CPU

GPU

launch sync launchsynclaunch sync

Here we can see a visualization of this approach. The CPU controller is in
charge of monitoring the current amount of work, and after fixed
synchronization points it can start new work. This means copying the fill
levels of the GPU queues back to the CPU at each synchronization point,
so that the host controller can decide how much new work to launch on
the device.
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Time-Sliced Kernels

+no divergence
+optimal occupancy

–CPU synchronization
28

CPU

GPU

launch sync launchsynclaunch sync

The benefits of this approach are
• There is no (added) divergence within a kernel
• This also means that we should observe optimal occupancy for each

kernel

The drawbacks are
• There is need for CPU synchronization, which adds some overhead to

the execution
• We cannot easily use shared memory to keep data local from one stage

to the other (only within one stage, consider a stage that could
generate new input for itself)

• Load imbalance might be a problem
• If one kernel runs longer than the others due to longer

processing, parts of the device might be unused until the next
CPU sync as no new work can be launched until the
synchronization point with the CPU comes up

28



Persistent Threads

• Threads execute in a loop

• Global work queue 
• Draw in new work from queue
• Execute work
• Enqueue new work (depends on the queue implementation)
• Continue until no work left

• Implicit load balancing
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One of the first ideas that shouldered the responsibility of scheduling
directly on the GPU was called Persistent Threads. With this approach,
threads execute in a loop and draw in new work from a global work
queue. This queue, at least as first mentioned, supports only one task
type.

Each thread (or work unit) can draw in new work from the queue, execute
it, enqueue new work (if the queue supports concurrent
enqueues/dequeues) and simply continues until no work is left. Since each
thread can immediately draw new work as soon as it is finished, this
results in implicit load balancing.
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Persistent Threads

30

e.g., Aila and Laine [2009]

work queue

worker block

task

In its original form, it mainly dealt with the issue of load balancing, but the
queue as used by Aila and Laine does not support dynamic work
generation. Each block keeps executing as long as work is available in the
work queue, hence load balancing is done implicitly.

As no new work can be generated, at least with this basic design, blocks
simply return if the queue is empty.
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Persistent Threads

+load balancing
+(dynamic work generation)

–only one type of task
31

Persistent threads improve upon the load balancing issues of the time-
sliced kernels approach and may in theory also support dynamic work
generation, depending on the queue implementation. But in this basic
version, only one task type is possible.

The generalized form of persistent threads is called MegaKernel and is
discussed next.
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Megakernel

• Generalized version of persistent threads
• Can handle different task types
• Depending on queue also

dynamic work generation

• May suffer from divergence

• Occupancy still bound by 
largest procedure
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Taking the basic concept from persistent threads, i.e. having the blocks
execute in a loop on the GPU and drawing in new work from work queues,
we can get to so-called MegaKernels by allowing for different task types.
This requires additional scheduling between the different work queues
and depending on the queue implementation, this also supports dynamic
work generation.

While we now can offer the same functionality as with Time-sliced kernels,
just with implicit load balancing directly on the GPU and with no explicit
CPU synchronization required, there are still some drawbacks:
• The occupancy is still tied to the largest procedure, as every block has to

be able to execute each task
• Furthermore, as each block might execute multiple, different tasks at

the same time, there is also potential for divergence negatively affecting
overall performance within blocks
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Persistent Megakernel

33

e.g. Steinberger et al. [2012]

different 
tasks

divergence

dynamic work 
generation

Here we can see one visualization of a MegaKernel, based on our own
work called Softshell. The queue supports multiple task types (typically
with an abstraction around multiple queues for one task type) and also
dynamic work generation. Each block still draws in new work after all work
has been finished per block, hence load balancing is quite well handled
but still divergence may occur within a block.
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Persistent Megakernel

+load balancing
+dynamic work generation
+multitasking

–divergence
–suboptimal occupancy
–bottleneck: work queue

34

To sum up, the benefits of a MegaKernel are:
• Implicit load balancing over the blocks, as each can immediately start

new work upon finishing execution of “old” work
• The queues support dynamic work generation
• And multiple tasks types are support as well

The drawbacks include
• Divergence within a block can reduce overall performance, especially if

there are large discrepancies between run-times of different tasks
• Occupancy is tied to the largest stage, hence large discrepancies

between stages once again reduce performance overall
• The work queue has to be efficient, as many blocks keep polling for new

work
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Dynamic Parallelism

• Nested parallelism occurs in many applications

• Since CUDA 5.0 
• Kernels can launch other kernels
• Dynamically adapt to 

amount of work

• Link with cudadevrt
• Compile with -rdc
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NVIDIA Developer Blog, Adaptive Parallel Computation with CUDA Dynamic Parallelism, 2014 
https://developer.nvidia.com/blog/introduction-cuda-dynamic-parallelism

Before diving into the last set of techniques, let’s first introduce dynamic
parallelism. Starting with CUDA 5.0, NVIDIA reacted to the problem of
nested parallelism being common in many applications by allowing for
kernels to launch other kernels. This way one can dynamically adapt to the
amount of work. On the right you can see a typical problem, where it can
be quite hard to find a good grid size selection for some simulation
problem, as it can be too coarse or too fine overall. Being able to react to
the coarseness of the problem directly on the GPU can be a great benefit.

To use dynamic parallelism, device linking has to be enabled and one has
to link against the CUDA Device Runtime.
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Dynamic Parallelism

36

launch sync
CPU

GPU

Here we see a visualization of how a task scheduling could work using
dynamic parallelism. The CPU would launch an initial block, which then
could launch new work in new kernels, specifically tailored to the amount
of work as well as the type of work. Hence, occupancy should be quite
optimal.
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Dynamic Parallelism

• Group of thread blocks is called a grid
Parent grid launches child grids

• Child grid inherits attributes
• L1 cache
• Shared memory configuration
• Stack Size

• Child grids are fully nested
Parent grid can cudaDeviceSynchronize()

Only thread which launches is aware
of actual kernel launch
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NVIDIA Developer Blog, CUDA Dynamic Parallelism API and Principles, 2014 
https://developer.nvidia.com/blog/cuda-dynamic-parallelism-api-principles

Back to the basics on Dynamic Parallelism: A group of blocks (each
consisting of a certain number of warps, each consisting of 32 threads), is
called a grid. In the context of DP, we speak of a parent grid launching a
child grid.

The child grid inherits some attributes from the parent, this includes the
configuration of Unified (L1) cache and shared memory as well as the
stack size. Child grids are always fully nested within the parent launch as
one can see in the graphic on the right. The parent grid implicitly waits for
the child grid to finish, but can also explicitly synchronize with the child
grid by calling cudaDeviceSynchronize(). One important note, only the
thread that actually performed the launch is aware of the child grid and
can synchronize.
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Dynamic Parallelism

• cudaDeviceSynchronize() is expensive
• May cause the currently running block to 

be paused and swapped to global memory

• Fully-consistent view of global memory
• Both directions with sync
• Weakly consistent in-between

• Passing pointers to child grid
• Global, zero-copy host and constant
• Shared and local memory
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NVIDIA Developer Blog, CUDA Dynamic Parallelism API and Principles, 2014 
https://developer.nvidia.com/blog/cuda-dynamic-parallelism-api-principles

Unfortunately but expectedly, a full cudaDeviceSynchronize can be quite
expensive as it might cause the currently running block to be paused and
swapped to global memory. This means that all the current state of a block
(registers, shared memory etc.) has to be copied to and from global
memory. But, at least for global memory, there exists a fully-consistent
view between child and parent, so a parent writing to memory and then
launching a child grid is guaranteed that the child sees the value.
Furthermore, if a child writes something and the parent synchronizes on
the child, it is also guaranteed to observe the value. Inbetween the model
is weakly consistent and there is no guarantee. One further limitation is
given by what can be passed to the child grid regarding memory:
• Global memory, managed (or zero-copy host) memory as well as

constant memory can be passed between parent and child
• Shared memory as well as local memory cannot be passed to the child

grid
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Dynamic Parallelism

• Child grids launched sequentially
• Happens even if launched by different threads
• Use streams

• Streams on device are non-blocking
• Kernels in different streams can execute concurrently

• Do not rely on that!
• Streams in different blocks are different

• Streams in same block can be used by all threads in block
• cudaStreamDestroy() returns kernels immediately

cudaStream_t s; 
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
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Identical to the host, child grids are launched sequentially, even if
launched by different threads by default. To allow for concurrent
execution, one has to use streams.

Streams on the device are non-blocking (launches in the same stream
occur still sequentially), hence kernels in different streams can execute
concurrently. One important note: Do not rely on this, as there is no
guarantee that two kernels will actually run concurrently, so a producer-
consumer system between two kernels is not guaranteed to work.
Furthermore, beware that streams in different blocks are different, while
streams in the same block can be used by all the threads. Lastly, one can
use cudaStreamDestroy() to immediately return a kernel.
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Dynamic Parallelism

• Recursion depth
• Nesting depth

• Kernels launched from host (Depth = 0)
• Hardware Limit = 24

• Synchronization depth
• Deepest level to sync (Default = 2)

cudaLimitDevRuntimeSyncDepth()

• Pending launches (Default = 2048)
• cudaDeviceSetLimit(cudaLimitDevRuntimePendingLaunchCount, 123456)
• Virtualized pool (more flexible, but additional launches more costly)
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If all of that sounds great, here are now a few caveats:
• There exist some hardware limits:

• There is a maximum nesting depth of 24, limited by the
hardware. Kernels are launched at depth 0 from the host ->
recursive launches only work up to the given hardware limit

• Furthermore, there is a limit how far the synchronization is
possible.

• The number of pending launches is also limited
• Once can increase this from the default of 2048, but this can be

quite costly

All of these limits exist as there are physical limitations, as states have to
be stored in memory etc. Overall, performance is limited quite a lot as
soon as one approaches any of these limits.
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Hybrid Dynamic Parallelism (HDP)

41

Controller

check check

One possible solution would look something like that, with a controller on
the GPU, checking the individual queues, launching new work into
separate, tailored kernels. This design mimics the TSK design from earlier,
with one central controller unit (possibly a single thread, or warp), that
routinely checks the work queues for new work and launches
corresponding new kernels.
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Dynamic Parallelism

+dynamic work generation
+GPU autonomy
+optimal occupancy

–no fine grained work generation though
–cannot use local memory to pass on data
–limited launch depth

42

launch synchronize
CPU

GPU

Overall, to summarize the benefits of DP:
• It automatically supports dynamic work generation
• It is GPU autonomous, same as the MegaKernel, foregoing the

synchronization with the host
• In contrast to the MegaKernel, it can tailor each launch to the specific

task, resulting in optimal occupancy

But there are some severe limitations:
• Due to the limit (and performance penalty) of launching many small

kernels, one cannot successfully allow for fine-grained work generation
• One cannot pass local memory directly to a kernel, only through global

memory
• The limited launch depth limits the approach of each kernel launching

new work (which would render the controller obsolete)
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Feature Comparison A

B

C D

E

F

3
1

2

Characteristics
A – Adaptive Scheduling
B – Optimal Occupancy
C – Local Queueing
D – Launch Overhead
E – GPU autonomy
F – Mixed Requirements

Level
1 – negative    2 – neutral    3 – positive

HDP

A

B
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E

F

TSK

A

B

C D
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F

WMK

A

B

C D

E
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Here we have a different visualization of six characteristics
• Adaptive Scheduling: This is a great benefit of the MegaKernel, which

can only be approximated with the other approaches
• Optimal Occupancy: HDP and TSK can tailor their kernels to the

requirements, contrary to the MegaKernel
• Local Queuing: The Megakernel can support that for different tasks, HDP

only for recursion
• Launch Overhead: CPU synchronization is worst, followed by GPU

synchronization and then no launches at all for the MegaKernel
• GPU Autonomy: WMK & HDP are autonomous, TSK requires

synchronization
• Mixed Requirements: Neither approach can fully utilize mixed

requirements, as homogeneous stages fit Megakernel best and
heterogeneous stages fit TSK & HDP best
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Future Ideas

• Allow combination of
MegaKernel and HDP

• Controller can launch
individual procedures or
smaller Megakernels

• Benefits
• Combine homogeneous 

workloads in MegaKernel
• Split apart heterogeneous

workloads

44
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WMK
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Following on this last idea, one possible evolution of these concepts would
be a combination of the benefits of the MegaKernel and HDP. The
controller in this instance can not only launch individual kernels for tasks
but also smaller Megakernels.

This way, one can combine homogeneous workloads into a MegaKernel
and split apart heterogeneous workloads into different kernels, in theory
combining the benefits of both approaches.
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Examples

Lastly, let’s look at some examples, starting with a few applications that
require a task-scheduling framework on the GPU and then we finish on a
software implementation of a rendering pipeline.
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Procedural Geometry Generation

• Spaceships generated randomly
• Input 

• Number of Cubes
• Random Parameter Table

• Recursive Tasks
• Responsible for different parts

of Spaceship

• Very homogenous overall
• MegaKernel performs best

• Local Queues help with
recursion
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Top-RecursionWing-RecursionBody-Recursion

Duplicate
CTA / SM Registers / Thread Shared Memory

Type Registers Worker 
Size

Shared 
Memory

Occupancy

Body-Recursion 56 1 2064 50%

Wing-Recursion 56 1 2064 50%

Top-Recursion 56 1 2064 50%

Duplicate 61 1 2064 50%

Parallel Generation of Architecture 
on the GPU

Markus Steinberger, Michael Kenzel, Bernhard Kainz, 
Jörg Müller, Peter Wonka and Dieter Schmalstieg

EG‘14

First of we can look at Procedural Geometry Generation, which we also
worked on in a paper on “Parallel generation of architecture on the GPU”
by Steinberger and collegeaues.
Here we set up an example which generates random spaceships, similar to
an approach by Ritchie and colleagues on the CPU.
One can input the number of cubes that should make up the spaceship
and a parameter table that steers the random generation of the wings and
top structure of this spaceship.

This pipeline is very homogeneous overall with loads of recursive tasks,
benefiting from local queueing.
Overall, a MegaKernel approach performs best here.
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SVG Rendering

• Implements hierarchical 
rasterization approach

• Some coarse rasterization tasks
• Determine potential coverage, 

depending on hierarchy different size
• Fine rasterization stage

• Heterogeneous requirements
• Especially worker size and shared memory
• Lots of recursion

• HDP & TSK on-par with WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Coarse <7,1> 70 16 3600 38%

Coarse <1,7> 70 16 3600 38%

Coarse <7,7> 71 8 21008 38%

FineStage 60 128 32 50%

Fine Stage

Coarse < 7 , 7 >

Coarse < 1 , 7 >

Coarse < 7 , 1 >

CTA / SM Registers / Thread Shared Memory

Hierarchical Rasterization of Curved 
Primitives for Vector Graphics 

Rendering on the GPU
Mark Dokter, Jozef Hladky, Mathias Parger, Dieter 

Schmalstieg, Hans-Peter Seidel and Markus Steinberger
EG‘19

Next we can look at a hierarchical SVG rasterization approach as based on
a paper by Mark Dokter and colleagues, called “Hierarchical Rasterization
of Curved Primitives for Vector Graphics Rendering on the GPU”,
consisting of some coarse stages, which determine first the potential
coverage and then are executed, depending on the current hierarchy level
and there is also a fine rasterization stage.
Overall, the requirements are quite heterogeneous, especially considering
worker size and shared memory.
But there is also significant recursion and local queueing helps, so overall
all approaches are on a similar level regarding performance.
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Catmull-Clark Subdivision

• Simple input mesh → detailed geometry
• Recursive subdivision
• Split mesh into patches

• Execution
• Heterogeneous shared memory

requirements
• Large input data 

• up to 500B
• TSK & HDP narrowly

outperform WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Poly-Patch 60 16 22736 50%

Quad-Patch 64 16 15952 50%

Regular-Patch 64 16 7056 50%

CTA / SM Registers / Thread Shared Memory

Quad-Patch Regular-PatchPoly-Patch

Subdivision-Specialized Linear Algebra 
Kernels for Static and Dynamic Mesh 

Connectivity on the GPU
Daniel Mlakar, Martin Winter, Pascal Stadlbauer, Hans-

Peter Seidel, Markus Steinberger and Rhaleb Zayer
EG‘20

Next we can look at Catmull-Clark Subdivision, where we also did some
work in a paper called “Subdivision-Specialized Linear Algebra Kernels for
Static and Dynamic Mesh Connectivity on the GPU”. Here, we use a
simpler implementation, which takes a simple input mesh and, using
recursive subdivision by splitting the mesh into patches, generates highly
detailed output geometry.

We observe quite heterogeneous shared memory requirements overall
and have to load quite a bit of data for each input patch.
Overall, TSK & HDP outperformWMK, but not by a huge margin.
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Reyes Rendering

• Split scene recursively into 
micropolygons

• Recursively split and render

• Heterogeneous workload
• Different worker size, shared

memory, registers
• TSK & HDP outperform WMK
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Type Registers Worker 
Size

Shared 
Memory

Occupancy

Check 24 16 2192 100%

Bound/Split U 63 4 14864 50%

Bound/Split V 62 4 14864 50%

Dice & Shade 104 256 6168 25%

Blend 14 1 2072 100%

CTA / SM Registers / Thread Shared Memory

BoundSplit-U

BoundSplit-V

Dice & ShadeCheck

Blend

Lastly, the previously mentioned Reyes Rendering, where the scene is
recursively split into micropolygons, which are further split up to a certain
level and then rendered in the end. Here we have a prime example of a
heterogeneous workload, with different numbers of workers per item,
different register requirements as well as shared memory requirements.
Here, TSK & HDP clearly outperform the MegaKernel approach.
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CURE
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Lastly, we can look at one project of ours which dealt with implementing a
software rendering pipeline.
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Basic Graphics Pipeline

51

Vertex Shading Primitive Assembly Projection Rasterization
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Here we have the basic graphics pipeline as it existed some years ago,
consisting of:
1. Vertex Shading
2. Primitive Assembly
3. Projection
4. Rasterization

Back then, everything was fixed-function and was purpose-built for the
task of rendering simple meshes.
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Compute 
Shader

Compute 
Mode

Geometry 
Shader

Fragment 
Shader

Primitive 
Processing Rasterization Fragment 

Processing Framebuffer

Vertex 
Shader

Vertex 
Processing

Input 
Assembly Tessellation

today!

Mesh 
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Fragment 
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Primitive 
Generation Rasterization Fragment 

Processing Framebuffer

Task 
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Task 
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Ray 
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Ray 
Generation Ray Tracing Ray Shading
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Today, we have access to different types of pipelines, depending on the
GPU in your system. The classical pipeline, now augmented by Tessellation
and also further means of geometry processing, still exists and still is
mostly used today for most rendering applications. But also new pipeline
models have been introduced in the recent years on modern GPUs.

This includes a pipeline based on Mesh Shaders (introduced with Turing
GPUs) and can replace the traditional pipeline. It adds two new shader
stages, the task shader (operates in work groups and can emit mesh
shader workgroups) as well as the mesh shader (generates primitives),
both similar to compute shaders and having greater flexibility and
scalability at possibly a reduced bandwidth.

Furthermore, we also got Ray Tracing support (also introduced with Turing
GPUs) as well.
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Programmable Hardware Pipeline

Hardware-accelerated Software Pipeline?
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Depending on the actual use case, different pipelines might work best. But
still, those pipelines have a rigid structure, which might not fit all scenarios
equally well. Hence we thought about the possibility of moving from a
programmable hardware pipeline to a hardware-accelerated software
pipeline to be able to adapt to specific use cases and test the benefits of
new pipeline designs.
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Compute 
Shader

Compute 
Mode

tomorrow?
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So instead of using fixed-function units, the question is if we can just do
everything in compute mode, is that feasible?
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Challenges

55

Vertex
Attributes

Indices
Input

Assembly
Triangles Raster
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Raster

Operations
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Shading
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ShadingRasterizerRasterizer
Vertex
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object-space parallelism screen-space parallelism

vertex-level parallelism primitive-level parallelism in-order blending

primitive order
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During a classical rendering pipeline, we not only have multiple different
stages, but also have to think about different levels of parallelism and
maybe have to obey primitive order.

The first part of the pipeline deals with object-space parallelism, while the
second part deals with screen-space parallelism.
When we look more closely at the first part, we can further distinguish
between vertex-level and primitive-level parallelism.
Furthermore, if we require in-order blending, primitive order has to be
kept the same throughout the pipeline.
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GPU Pipeline Implementation
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When we think about execution patterns, we have to be careful about our
memory footprint. Using a sequential design (like KBK), executing one
stage of the pipeline after the other, we quickly run into problems with
memory consumption, as is visualized on the left side. Rendering pipelines
are usually built on a streaming approach, as can be seen on the right side,
here we use much less memory overall.
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How do we implement it?

• Design Principle:
• globally sort middle
• locally sort everywhere else

Vertex
Attributes

Indices
Input
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Triangles Raster
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Raster
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Primitive
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Framebuffer

Geometry Processing Rasterization

Primitive ProcessingVertex Processing Fragment Processing
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To keep primitive order, we also have to think about sorting. One sensible
solution is to globally sort middle and locally sort everywhere else during
the pipeline.
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Megakernel Approach

• fill GPU with worker blocks

• run either
• Geometry Processing or
• Rasterization

• global load balancing:
raster queues

• local load balancing:
on-chip buffers
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RasterRaster

RasterRaster

framebuffer05.05.2021 – 06.05.2021 CUDA and Applications to Task-based Programming

In our design, we build on a MegaKernel approach and start by filling the
GPU with worker blocks. Each block can handle either Geometry
Processing or Rasterization tasks. Global load balancing is handled via the
raster queues, but also local load balancing is possible by using shared
memory directly on-chip for improved performance, so only in the end
one has to write to global memory again. This is based on work by Michael
Kenzel and colleagues (“A high-performance software graphics pipeline
architecture for the GPU“ at Siggraph’18).
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Comparison with Hardware Pipeline

increase shader load ⇨ pipeline overhead less significant
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We also did some comparisons against the standard hardware pipeline. In
this plot, you can see the overhead plotted. As can be seen, there is quite
significant overhead compared to the specific hardware units which
obviously are faster than a respective software implementation. But we
can see that by increasing the shader load, i.e., minimising the overhead
accumulated from the software pipeline compared to the hardware
pipeline, the performance actually gets quite close to the hardware
pipeline overall.
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Performance Breakdown

• workload dominated by
• framebuffer
• primitive order
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We also looked more closely at the performance cost of the individual
stages. The workload overall is dominated by the primitive ordering as
well as writing to the framebuffer, as ROPs are not directly accessible via
software yet. If one could access the ROPs directly and primitive order is
not a huge factor, performance would actually be really competitive.
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Application examples
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Lastly, what such a modular pipeline design allows are applications which
can be quite hard to handle using the traditional, fixed pipeline.
Here we have four examples
• Checkerboard Rendering
• Foveated Rendering with an adaptive sampling rate
• Heightmaps can lead to issues, here the geometry shader could be used

but is typically slower
• Programmable blending (different blending that is available with ROPs)
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Conclusion

• Task-parallelism vs. Data-parallelism
• Need to organize work

• Queues

• Different scheduling techniques
• Time-Sliced Kernels
• MegaKernel
• Dynamic Parallelism

• Many examples benefit
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This concludes our tutorial session, so let’s summarize quickly what you
should take with you:
• We initially looked at the general CUDA programming model and how it

fits to different applications
• We discussed the need to organize work using some data structure and

we introduced several variants of a queue
• Then we talked in detail about different techniques for scheduling tasks

on the GPU
• Finally, we mentioned a few examples and compared the individual

techniques regarding their feasibility on some examples
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